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A three-dimensional lattice model is proposed for which the constant ~ occur- 
ring in the dimer problem can be evaluated exactly. 
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1. INTRODUCTION 

The three-dimensional dimer problem, one of the classical unsolved prob- 
lems of lattice statistics, can be formulated as follows. An N-brick is a 
three-dimensional parallelopiped of volume N with sides whose lengths ll, 
l 2, l 3, are integers. A dimer is a 2-brick. The problem is to determine the 
number of ways of dissecting an N-brick into dimers. Denote this number 
by f t, where 1= (11,12,13). It is known (1) that if l~---> ~ ( i =  1,2,3), then 
N -  lln j~ tends to a finite limit ~. The exact value of ~ is not known. 

The early paper by Fowler and Rushbrooke (2) gave the estimate 
= 0.43 together with the rigorous bounds 

0 < 2~ <�89 (1) 

Since the number of ways of dissecting an N-brick is a nondecreasing 
function of the dimensionality, the exact solution of the two-dimensional 
dimer problem (3'4) yields 

O/~ < X (2) 

where G = 0.915965. . .  (Catalan's constant). 
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In 1968 Hammersley (5) obtained the lower bound 

1 fo~dOlfo~dO2fo~dO31n ~ s i n a 0 i  < ~  (3) 
4~r 3 i= 1 

In 1978 Minc (6) improved the Fowler-Rushbrooke upper bound (1): 

h < ~21n6! (4) 

Thus, from (3) and (4) we have 

0.418347 < ~ < 0.548270 
In this paper the three-dimensional lattice model is proposed for which the 
exact value of ~ is equal to the Hammersley lower bound. In the next paper 
(Part II) we shall use the proposed model to obtain an improved lower 
bound for the three-dimensional dimer problem. 

2. MODEL 

The N-brick is the union of N unit cubes; let L be the lattice consisting 
of centers of these cubes. We denote the lattice points by ( x l , x 2 , x 3 ) ,  

0 < x i < 1 i (i = 1,2,3). By reduced coordinates of the point ( x l , x 2 , x 3 )  we 
understand the integers [k 1, k 2, k3] defined by 

k, = x, (mod 2) (i = 1,2, 3) (5) 

We say that the set of lattice points having reduced coordinates [0, 0, 0] is a 
sublattice Ao,  and the set of lattice points having reduced coordinates 
[1, 1, 1] is a sublattice B 0. Consider an arbitrary dissection of the N-brick. 
Let p~ and P2 be a pair of neighboring points of the sublattice A 0. We say 
that for any pair p~p2 a given dissection generates a path from p~ to P2 if the 
dimer containing Pl adjoins the unit cube containing P2. A collection of 
paths of the form PIP2,  P2P3, �9 �9 �9  P , -  lP,~ is a path from Pl to p,.  

If in the collection of paths PlP2 ,  P2P3 . . . . .  P , - l P n  the point Pl 
coincides with the point p., the path PIP,, is closed. Similarly, we define a 
path on the sublattice B 0. 

Now, we can define our model as follows. Consider all dissections of 
the N-brick generating no closed path on the sublattices A 0 and B 0. Denote 
the number of such dissections by j~*. The problem consists in finding a 
limit 

h* = l im 1 In j~* ( i  = 1,2,  3) (6) 
//~oo 1u 

In the next section we show that in order to evaluate ~*, it is sufficient to 
enumerate dimer configurations containing points of one sublattice only. In 
Section 4 we shall reduce this problem to the solved problem concerning a 
number of random walks returning to the original point. 
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3. F A C T O R I Z A T I O N  O F f f  

The sublattices Ao and B 0 contain N/4 points of the lattice L. We 
divide the remainder of lattice points ( 3 N / 4  points) into two sets A 1 and 
B 1 . A sublattice A l is the set of points with reduced coordinates [1, 0, 0] or 
[0, 1,0] or [0, 0, 1]; a sublattice B l is the set of points with reduced coordi- 
nates [1, 1, 0] or [1, 0, 1] or [0, 1, 1]. 

In every dissection of the N-brick there exist dimers of three sorts: (i) 
dimers containing points of the set A0; (ii) dimers containing points of the 
set Bo; (iii) dimers containing none of the points of the sets A 0 and B 0. 

Let us try to dissect the N-brick into dimers in the following manner. 
First we eliminate from the N-brick the dimers of the sort (i) until in the 
N-brick there remain no points of the sublattice A 0. Then we eliminate the 
dimers of the sort (ii) until in the N-brick there remain no points of the 
sublattice B 0. These procedures are independent because any dimer of the 
sort (i) intersects none of dimers of the sort (ii). The question arises whether 
one can always dissect the remaining volume into dimers. The situation 
here is described by the following theorem. 

Theorem 1. Let D(Ao) and D(Bo) be configurations of dimers of the 
sort (i) and (ii) that contain all points of the sublattices A o and B 0 and do 
not generate a single closed path. Then, the volume resulting from elimina- 
tion of all dimers belonging to D(Ao) and D(Bo) out of the N-brick can be 
dissected into dimers in the unique manner. 

Before proceeding to prove Theorem 1 we shall point out its corollary. 
The numbers of all possible configurations D(Ao) and D(Bo) are 

obviously equal. Denote them by ~Pt. It follows from Theorem 1 that the 
required number of dissections of the N-brick is 

f~* = (~0,) 2 (7) 

Let D(Ao) and D(Bo) be two arbitrary dimer configurations satisfying 
the requirements of Theorem 1. Consider a volume V resulting from the 
elimination of all dimers belonging to D(Ao) and D(Bo) out of the N-brick. 
Denote by L v the subset of the lattice points belonging to V. We denote by 
G the graph whose vertices are the elements L v and whose arcs are the unit 
segments that join all adjacent vertices. As usual, we call the number of 
arcs incident to the given vertex p the degree of this vertex (denoted by 
deg p). Every vertex of G belongs to the sublattiee A 1 or to the sublattice 
B 1. Nearest neighbors of a vertex belonging to A l (B0  are vertices belong- 
ing to B l (A l)- 

Let a~ E A 1 be a vertex of G. If dega I > 2, eliminate from G all arcs 
incident to a I except for two arbitrarily chosen arcs r I and r]. From the 
remaining graph choose the connected component G(al;rl,r]) containing 
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the vertex a I. Further, let a 2 E A l be some vertex of G(al;r l , r ' l )  having a 
common adjacent vertex b E B 1 with a 1. If dega  2 > 2, choose again two 
arcs r 2 and r~ from arcs incident to a 2 and eliminate remaining ones. The 
connected component  of the resulting graph containing a 1, a 2 is the graph 
G(a l ; r l , r ] la2 ;  r2,r'2). Proceeding with this procedure and choosing at an 
ith step a vertex a i ~ A l having a common adjacent vertex with at least one 
of the sites a~, a 2 , . . . ,  a i_ 1, we obtain the subgraph G ( a l ; r l , r q l . . .  [ak; 
r k, r'~) of the graph G containing none of the vertices aj E A 1 with degaj 
> 2. We say that this subgraph is an A 1 subgraph. If G has no vertices 
aj E A~ with deg aj > 2, it coincides with its A 1 subgraph. 

Similarly, we construct a B 1 subgraph. The proof of Theorem I is 
based on the following lemma: 

Lemma.  Every A l subgraph of G contains at least one vertex a ~ A 1 
with dega  = 1 and every B 1 subgraph of G contains at least one vertex 
b E B 1 with degb = 1. 

Proof. Suppose the contrary, i.e., there exists an A~ subgraph of G 
such that all its vertices a i belonging to A ] have deg ai = 2. For every vertex 
b~ E B l of this A 1 subgraph we build a 2 • 2 square (plaquette) with the 
center in b~ and the vertices belonging to the sublattice A 0 (except those 
which do not belong to the N brick). A side of each plaquette either is 
occupied by the vertex ~ of the A 1 subgraph (aj ~ A l, degaj = 2) or is free, 
i.e., does not contain vertices of the A] subgraph. In the first case this side 
is common for two or more adjacent plaquettes. 

A collection of plaquettes cannot encompass any part  V' of volume V 
since otherwise the configuration D(Bo) generates paths enclosed in V'. 
These paths have no end points (only one path emanates from every point 
of sublattice B 0 enclosed in V') and therefore contain at least one return 
point. We arrive at a contradiction with the condition of Theorem 1. 

If the collection of plaquettes does not encompass a closed volume, 
there exists at least one free closed boundary, i.e., a sequence of plaquette 
sides not containing points of the A] subgraph and forming a closed 
contour F. 

A side of a plaquette cannot be occupied by a vertex belonging to G 
and not belonging to the A 1 subgraph. Indeed by definition of G there 
would be an arc connecting this vertex with the center of the plaquette and, 
by construction of the A 1 subgraph, only those arcs are eliminated from G 
which are incident to the vertices of the A 1 subgraph. 

Let 71,'/2 . . . . .  72n-1,72n be a sequence of lattice points belonging to 
F such that any two successive points in the sequence are neighbors. The 
first and last points of this sequence are neighbors, too. If point 7i belongs 
to the sublattice A 0 (A ~), then the point 7i+~ belongs to the sublattice A~ 
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(A0). The pairs of elementary cubes corresponding to the pairs (71,~'2), 
(Y3, Y4) . . . . .  (72 , - l ,  72n) form the sequence of dimers. These dimers belong 
to the configuration D(Ao)  and generate a closed path, which is a contra- 
diction. 

If F does not entirely belong to the N-brick, its points belonging to the 
sublattice A 1 exceed in number  those for the sublattice A 0. Then the part  of 
F lying inside of the N-brick cannot be formed by D(Ao),  which is also a 
contradiction. 

Similarly, we prove the existence of vertex b E B 1 with degb = 1 in 
every B 1 subgraph. 

Corollary.  The graph G contains at least one vertex a ~ A 1 with 
dega  = 1 and one vertex b E B~ with degb = 1. 

Note  that every dissection of the volume V into dimers corresponds to 
a dissection of the graph G into nonintersecting pairs of adjacent vertices. 
For the proof of Theorem 1 it is sufficient to find such a way of successive 
elimination of adjacent vertices and arcs from G that after each step a 
remaining graph obeys the conditions of Theorem 1. Indeed, then every 
remaining graph has at least two vertices a and b such that a E A~, b E B~, 
dega  = 1, degb = 1, and we can take as the next pair the vertex a together 
with its neighbor. At the end, there remains a unique pair of adjacent 
vertices a t E A l, and b i E B t which corresponds to the last dimer. 

P r o o f  o f  T h e o r e m  1. Let Lemma 1 be valid for the connected graph 
G (n) obtained from the graph G by elimination of n pairs of adjacent 
vertices (the generalization to the case of several connected components is 
straightforward). Consider an arbitrarily chosen vertex a 0 of the graph G 
such that a o E A  1, d e g a 0 =  1 and a vertex b o E B  1 belonging to G and 
adjacent to a o. Let degb 0 > 1 (in case degb 0 = 1 G (") is a pair of adjacent 
vertices aob o and dissection of the graph G is completed). 

Eliminate the pair aob o from G (") together with arcs incident to them. 
We obtain a graph G ("+~). Every B 1 subgraph of G (n+l )  contains at least 
one vertex b @ B 1 with degb = 1 since such a vertex is in every B 1 subgraph 
of G (~) and elimination of the pair aob o does not reduce the number  of 
vertices b; of the sublattice B 1 with degbi = 1. 

Now we shall prove the existence of the vertex a (a E A 1 , dega  = 1) in 
every A~ subgraph of G ("+1). In the graph G (n) degb 0 > 1, so besides a 0 
there are not less than one (and not more than three) vertices of A l 
sublattice adjacent to b 0. Denote them by a k (1 < k < 3). Note that in the 
graph G (") degag > 1 for all a k. Indeed, in case dega  k = 1 the B 1 subgraph 
(with vertices ak, bo, a o and arcs akbo, aobo) has to exist which has no 
vertices b i ~ B 1 with deg bi = 1. 
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If in the graph G (n) dega~ = nk, then in the graph G (n+l) dega  k = 
n k - 1, so it is sufficient to consider the case n k > 2 (1 < k < 3). In this case 
one can consider every A 1 subgraph of G ("+]) as the A l subgraph of G (") 
without arcs akb o (k = 1,2,3). But every A 1 subgraph of a (n) has at least 
one vertex a E A 1 with deg a = 1, therefore such a vertex is in every A 1 
subgraph of G (n+l). The theorem is proved. I I  

4. CALCULATION OF % 

In the previous section we have defined rpl as the number  of dimer 
configurations of sort (i) which do not generate a single closed path on the 
sublattice A 0. Let us formulate in slightly different terms the problem 
necessary to solve for determining cpz. 

Let E be a simple cubic lattice of % sites. We introduce a new system 
of graphs. Denote by ~ the graph whose vertices are all sites of E. Let ~ be 
an oriented graph such that for every pair of vertices s and s '  joined by the 
edge Dss, directed from s to s '  there is an edge Ds~, directed from s'  to s. An 
oriented route is defined as a succession of oriented edges (arcs) such that 
the beginning of the next arc coincides with the end of the preceding one: 
Dili2Di2i3 �9 ""  Di,,_,ik. TO shorten the expressions, we label all pairs (D~,D~,s) 
of oppositely oriented arcs and denote one of the arcs of pair i (it is 
immaterial, which) by the symbol D; + and the other by D i - .  Where 
confusion cannot arise, we shall omit the symbols _+. 

In an oriented route the beginning and the end may coincide and it is 
then said to be cyclic. Any circular permutation of edges of a cyclic route 
leads to the same route. An oriented route for which there exists a 
representation in the form ( D i ,  Di2 �9 �9 �9 Dik)m , where m > 1 is integer, is 
called a periodic cyclic oriented route. Nonperiodic cyclic oriented routes 
will simply be called cycles. An elementary cycle is a cycle in which aU the 
vertices are passed through once. We define an elementary subgraph g ~ 
as a graph consisting of one or a set of elementary cycles that do not have 
common vertices. 

Now let the lattice ~ coincide with the sublattice A 0 so that % = N / 8 .  
In accordance with the above definition tpt is the number  of all subgraphs 
gt ~ ~ which obey the following conditions: (a) gx contains all vertices of ~; 
(b) every vertex of gl has one arc leaving it; (c) gt does not contain single 
elementary cycles. 

The idea of the solution is to enumerate all elementary subgraphs in 
such a way that each elementary cycle enters into the sum with the "minus" 
sign. Then, using the inclusion-exclusion combinatorial principle, we can 
enumerate all subgraphs that do not contain a single elementary cycle. 
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We introduce a weighted cycle. Ascribe to both arcs Di + and D i- the 
weight w(i) and assume that w(i)= Z k if arc i is oriented along the axis 
ek(k = 1,2,3). Define the weight W(p) of the cyclep = Di,,Di2,..., Dgk as 
the product ( - 1 ) w ( i O w ( i 2 ) . . .  w(i~). Accordingly, the weight of a sub- 
graph g consisting of the elementary cycles Pl, P2, �9 �9 �9 Pn is defined as the 
product 

X( g) = H w(ei) 
i ~ l  

We ascribe the weight 1 to the empty subgraph. In Ref. 7 the following 
theorem was proved: 

Theorem 2. The product 1-Ip[1 + W(p)] over all possible cycles of 
the graph ~ is equal to the sum ~g~eX(g) over all elementary subgraphs of 
~, including the empty subgraph, 

H [ I +  W ( p ) ] - -  ~ x(g)  (8) 
p gE~ 

To evaluate the right-hand side of (8) we shall use the periodic boundary 
conditions, i.e., we shall consider the lattice obtained by identifying and 
joining opposite faces of the original lattice. Equivalence of the two types of 
the boundary conditions was discussed in Ref. 5. 

On the basis of (8), we have 

In Z x( g) -- ln I-[ [1 + W ( P ) ] = l n I - [ ( 1 - [ - W ( P ) ] }  
g ~  P P 

S(U,, N )Z ,Z2 Z2  
= -qYC ~ NI + N2 + N3 (9) 

N1+N2+N3~2 

where S(NI,N2,N3) is the number of all possible closed paths without 
restrictions to the periodicity which have N k arcs oriented along the axis e~. 
The last sum in Eq. (9) is multiplied by %, since a closed path can begin at 
any site of the lattice ~; the denominator N 1 + N2 + N3 in this sum has 
arisen because the closed path of length N 1 + N 2 + N 3 may have any of the 
sites contained in it as the first one. 

Let fl(ml,m2,m3;rl,r2,r3) be the sum over all possible paths on the 
three-dimensional integer lattice E from the site with coordinates (0, 0, 0) to 
the site with coordinates (ml,mz,m3) , and every path contains r k steps 
along e~. Let fl(m 1, mE, m 3 ; 0, 0, 0) = 8,~,08,~208m3 o. By definition S(r 1 , r2, r3) 
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= fl(0, 0, 0; r I , r 2, r3). The sum f l ( m  1, m2, m3; rl, r2, r3) satisfies the recursion 
relation 

f l ( m l , m 2 , m 3 ; r l , r z , r 3 )  = f l ( m  I - 1 , m z , m 3 ; r  1 - 1,rz,r3) 

+ f l ( m l  + 1 , m 2 , m 3 ; r l  - 1,r2,r3) 

+ f l ( m  l ,  m 2 - 1, m3; r 1, r 2 - 1, r3) 

+ f l ( m l , m  2 + 1 , m 3 ; r l , r  2 -  1,r3) 

+ f l ( m l , m 2 , m  3 -  1 ; r l , r 2 , r  3 -  1) 

+ f l ( m l , m 2 , m 3 +  1 ; r l , r z , r  3 - I) (10) 

We define the Fourier transform of f l ( m  I , m 2, m 3 ; r  I , r 2, r 3) by the equations 

B ( a ; r ) = - ~  ~ N 2 f l (m;r)exp-2~ri  
m,=0 m2=O m3=0 j=l  /j ] (11) 

f l (m;r)= N 2 N B(a,r)exp 2~ri 
ml=0 m2=0 m3=0 1 T 

Introduce the generating functions 

r (a ;z)  = ~ ~ ~ B(a;r)Zf'Z~2Z~ 3 

r, ~>0 r2~>o r3>o (12) 

/ ( re ;z )=  E E E fl(m;r)Z{'Z~2Z~ ~ 
r I/>0 r2>~0 r3~0 

Then on the basis of (10) 

f ( m , ,  m 2, m 3 ; Z 1 , Z 2, Z3) = 8..,08..206m~0 + Z t f ( m l  --  1, m 2, m 3 ; Z , ,  Z 2, Z3) 

+ Z 1 f ( m  I + 1, m 2, m 3 ; Z l , Z 2, Z3) 

+ Z 2 f ( m l ,  m 2 - 1, m 3 ; Z 1 , Z 2, Z3) 

+ Z 2 f ( m l , m 2  + 1,m3; Z 1 , Z z , Z 3 )  

+ Z 3 f ( m l ,  m 2, m 3 - 1; Z 1 , Z 2, Z3) 

+ Z 3 f ( m ] , m 2 , m  3 + 1 ; Z 1 , Z z ,  Z 3 )  (13) 

[ ( 4 7 r i a , )  [ 4 ~ r i a , ]  
1 +F(a,z)  Z lexp + Z  1 F(.,.)-- t, ) 

"4- Z 2 exp( - - -  

+ Z 3 exp( - - -  

4qria2 exp( 4~ria2 

4~ria 3 [ 4~ria 3 ~ ] 

1 (14) 
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whence 

where 

oo 
1/% _ 1 ~Rg(z )  

F ( a ; z ) -  1 - R(z) % j=0 

3 4r 
R(z) = 2 E zj c o s - -  

j=l  /_1 

From Eq. (15) in accordance with (12) we readily obtain 
rl r 2 r 3 

B ( a ' r ) Z l  Z 2 Z 3 _ 

rl,r2,r 3 >/0 rl  + r2 + F3 
rl+r2+r3>~ l 

or, using the transformations (11) 
r I r 2 r 3 B(m; r)Z~ z2 z3 

rl,r2,r 3 ~ 0 rl + r2 + r3 
rl+r2+r3>~ 1 

1 ~ RJ( z ) _  1 l n [ 1 - R ( z ) ]  
• j = O  J % 

(15) 

(16) 

(17) 

(19) 

Taking into account Eq. (9) and the definition of S ( r  l, rE, r3) we obtain for 
the sum over all weighted elementary subgraphs g ~ G the expression 

rl r 2 r3 
In ~] x(g) = % ~] S ( r x '  rE, r3)Zl  Z2 Z3 

gE~ rl+r2+r3>/O rl + r2 + r3 

6 / 2 - 1  6 / 2 -  ] 6 / 2 -  ] 

= E E E l n [ 1 - R ( z ) ]  (20) 
a l = 0  a 2 = 0  a 3 = 0  

Consider all subgraphs of ~ satisfying the conditions (a) and (b) 
mentioned above. The total number of such subgraphs containing r 1 , r z, r 3 

r l  /*2 r3 arcs oriented along el,e2,e 3 is equal to the coefficient of Z 1 Z z Z  3 in the 
expansion of the generating function 

~ ( Z ] , Z 2 , Z 3 )  = (2Z, + 2Z 2 + 2Z3) ~ (21) 

E 
rl,r2,r 3 >/0 

rl+r2+r3>~ l 

For the case of interest to us of a walk returning to the original point, 
we have 

f l ( O ;  rl r2 r3 1 , / 2 -  1 12/2- 1 13/2-1 
r)Z1Z2Z3 = - - 1  • ~ E l n I 1 - R ( z ) ]  

r I + r 2 + r 3 ~ a l = 0  a2=0 a3=0 

,J , l ,J ,  ,J , l  { 
_ 1 ~,, ~] ~] exp 2~i l n [ 1 -  R ( Z ) ]  (18) 

G~ a I = 0  a2=O a3=O j =  I T 
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To determine ~1, it is necessary to eliminate from this set the subgraphs 
containing at least one elementary cycle. Using Eq. (20) we can find an 
expression for the sum N(r  1, r 2, r3) of subgraphs that completely consist of 
cycles. These subgraphs contain r k arcs oriented along e~ and each sub- 
graph enters into N(r  I , r 2, r3) with factor ( -  1) m, where m is the number of 
elementary cycles in the given graphs. We write Eq. (20) in the form 

ll/2-112/2-113/2-1[ 3 ] 
x(g)  = IX I-I I-[ 1 + ~ (Zje~J + Zje-~J) (22) 

g ~  al=0 a2=0 a3=0 j = l  

where aj = 4~riaj/lj; (1 < j < 3). It follows from the definition of x(g) that 
/'1 /'2 /'3 the sum N(r  I , r2, r3) is equal to the coefficient of Z l Z 2 Z 3 in the expansion 

of the right-hand side of Eq. (22). 
Combine (21) and (22) into the form 

ll/2--1 12/2--1 13/2--1 3 
1-[ I I  r I  ~ ( 2 ~  + Zje'~ + Z j e - ~ )  (23) 

a l=0 a2=0 a3=0 j = l  

and consider the coefficient of the term (2~;2~s ;) • (Z~'Z~2Z~ 3) where 
r I + r] = R1, r 2 + r~ = R2, r 3 + r~ = R3, R 1 + R 2 + R 3 = 60L. This coeffi- 
cient is equal to the sum N(r, ,r2,r31r ~,/2, r'3) over all graphs in which 
r 1 + r 2 + r 3 arcs are combined into cycles, each of them entering into the 
sum with the factor ( -  1), and the remaining r 1 + r~ + r~ arcs are arranged 
arbitrarily. Then the coefficient of zR 'z~2z3  R~ in the expansion of the 
expression 

ll/2-- 1 12/2-- 1 13/2-- 1 3 
I-I I'[ I'I ~] (2Zj + Zje~ + Z je -~ )  (24) 

a 1=0 a2=0 a3=0 j = l  

is equal to 
RI R2 R3 
E E E N ( r l , r 2 , r 3 l R 1 -  r l , R 2 -  r2, R 3 -  r3) (25) 

r I/>0 r2~>0 r3>0 

We now have the necessary material that enables us, using the inclusion- 
exclusion principle, to obtain an expression for ~t. Suppose there are N 
elements and a certain number of properties p(l) ,  p(2), . . . ,  p(n). Suppose 
further that N i is the number of elements with property P(i) and, generally, 
Ni]i2.. "it is the number of elements with properties p( i i ) , /0( i2) , . . -  ,p(i/'). 
Then the number of elements N(0) that have none of these properties is 
given by 

N(O) = N -  E N i +  E Nili2- """ + ( - 1 )  s E Nili2-..is 
i i 1 < i 2  i 1 < i 2 <  - - "  <is 

+ . . .  + ( -  1)'N,2 . . . .  (26) 
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To solve the problem, we label by 1, 2 . . . . .  n all possible elementary cycles 
on the lattice under consideration. Consider subgraphs ~n,R2n3 E ~ such 
that from every point of the lattice ~ one arc emanates, the number of arcs 
oriented along e,. is R; (R 1 + R 2 + R 3 = %). We shall assume that ~R~R2R3 
has the property p(i) if the elementary cycle i is its subgraph. Let Ni, i . . . .  ir 
be the number of graphs ~n,n2n3 whose subgraphs are the cycles i 1, 
i 2 . . . . .  i r. Then the total number of graphs ~R,R2R~ not containing any 
cycle is determined by the right-hand side of Eq. (26). But in accordance 
with the definition the sum (25) is exactly equal to the right-hand side of 
(26) since it contains all terms Ni,~... ir with the correct signs. 

Therefore the partition function for the subgraphs ~R,R~n3 not contain- 
ing any elementary cycle is 

~g,(ZI,Z2,Z3) ~- E E E zR'zR2zR3 
R I >0 R2>0 R3>0 

X E E E N(rl,r2,r31gl-rl,R2-r2,g3-r3) 
rl >~O r2>O r3>O 

ll/2--112/2--113/2--13( 4rraj ) 
= 1"I 1-I 1-I E 2Zj + 2 Z j c o s ~  (27) 

al=0 a2=0 a3=0 j = l  /J" 

The required quantity opt is 

~ , = ~ , ( 1 , 1 , 1 ) = e x p  ~ 2 2 In 4 sin 2 (28) 
o,=o o =o o3=o , T !  

when l 1, l 2,/3 ~ ~ .  The right-hand side of (28) tends to the triple integral, 
and using Eqs. (6) and (7) we get 

)~*= lira 1 lnq0~= dO, dO 2 03In 4 sin20j (29) 

Thus, the three-dimensional dimer problem becomes solvable if we add to 
the standard dimer-problem requirements the additional one that there be 
no elementary cycles on the sublattices of the original lattice. 

The comparison of the value ~ * =  0.418 with the series-expansion 
estimate X = 0.446 (8) shows that the contribution to ~ from the forbidden 
configuration is relatively small. In the next paper a part of this contribu- 
tion will be taken into account to improve the lower bound for the 
three-dimensional dimer problem. 
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